$$ v(t) = V_i + \frac{1}{2} \cdot a \cdot t = d / t $$
$$ \Delta t = 0,0001 \ s \\ \Delta d = 0,1 \ cm $$
$$ \Delta v(t) = \sum_i \lvert \frac{\delta v}{\delta x_i} \lvert \Delta x_i = \lvert \frac{\delta v}{\delta t} \lvert \cdot \Delta t + \lvert \frac{\delta v}{\delta d} \lvert \cdot \Delta d $$
—
$$ a = \frac{m_1}{m_1 + m_2} \cdot g $$
$$ \Delta g [m/s^2] = 0,01 \\ \Delta m [gr] = 0,1 $$
$$ \Delta a = \sum_i \lvert \frac{\delta v}{\delta x_i} \lvert \Delta x_i = \lvert \frac{\delta a}{\delta m_1} \lvert \Delta m_1 + \lvert \frac{\delta a}{\delta m_2} \lvert \Delta m_2 + \lvert \frac{\delta a}{\delta g} \lvert \Delta g $$
$$ \Delta a = \frac{g\cdot (m_1 + m_2) - 1 \cdot (m_1 \cdot g)}{(m_1 + m_2)^2} \Delta m_1 + \lvert m_1 \cdot g \cdot (\frac{-1}{m_2^2}) \lvert \Delta m_2 + \frac{m_1}{m_1 + m_2} \cdot \Delta g $$